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Abstract 8 

Surface incident shortwave radiation (ISR) is a crucial parameter in the land surface 9 

radiation budget. Many reanalysis, observation-based, and satellite-derived global radiation 10 

products have been developed but often have insufficient accuracy and spatial resolution for 11 

many applications. In this paper, we propose a method based on a radiative transfer model for 12 

estimating surface ISR from Moderate Resolution Imaging Spectroradiometer (MODIS) Top of 13 

Atmosphere (TOA) observations by optimizing the surface and atmospheric variables with a cost 14 

function. This approach consisted of two steps: retrieving surface bidirectional reflectance 15 

distribution function parameters, aerosol optical depth (AOD), and cloud optical depth (COD); 16 

and subsequently calculating surface ISR. Validation against measurements at seven Surface 17 

Radiation Budget Network (SURFRAD) sites resulted in an R2 of 0.91, a bias of -6.47 W/m2, 18 

and a root mean square error (RMSE) of 84.17 W/m2 (15.12%) for the instantaneous results. 19 

Validation at eight high-latitude snow-covered Greenland Climate Network (GC-Net) sites 20 

resulted in an R2 of 0.86, a bias of -21.40 W/m2, and an RMSE of 84.77 W/m2 (20.96%). These 21 

validation results show that the proposed method is much more accurate than the previous 22 

studies (usually with RMSEs of 80-150W/m2). We further investigated whether incorporating 23 

additional satellite products, such as the MODIS surface broadband albedo (MCD43), aerosol 24 
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(MOD/MYD04), and cloud products (MOD/MYD06), as constraints in the cost function would 25 

improve the accuracy. When the AOD and COD estimates were constrained, RMSEs were 26 

reduced to 62.19 W/m2 (12.12%) and 71.70 W/m2 (17.74%) at the SURFRAD and GC-Net sites, 27 

respectively. This algorithm could estimate surface ISR with MODIS TOA observations over 28 

both snow-free and seasonal/permanent snow-covered surfaces. The algorithm performed well at 29 

high-latitude sites, which is very useful for radiation budget research in the polar regions.  30 

 31 

Keywords: Incident shortwave radiation, Optimization, Aerosol optical depth, Cloud 32 

optical depth 33 

 34 

1. Introduction 35 

Surface incident shortwave radiation (ISR) is the irradiance that reaches the Earth’s 36 

surface in the shortwave spectral range, usually between 300 and 3000 nm. As the main energy 37 

source for the Earth’s surface, ISR drives energetic, hydrological, and ecological dynamics at the 38 

Earth’s surface and controls the energy and water exchanges between the surface and atmosphere 39 

(Liang et al. 2010). Efforts have been made in the estimation of ISR for several decades. 40 

Currently, many global and regional networks provide ISR measurements, such as the Surface 41 

Radiation Budget Network (SURFRAD) (Augustine et al. 2000), FLUXNET (Baldocchi et al. 42 

2001), Baseline Surface Radiation Network (Ohmura et al. 1998), Global Energy Balance 43 

Archive (Gilgen and Ohmura 1999; Wild et al. 2013), Greenland Climate Network (GC-NET) 44 

(Steffen et al. 1996), and Atmospheric Radiation Measurement. In-situ measurements are 45 

believed to have higher accuracy than other sources but have limited spatial coverage and 46 
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representativeness. For better spatial coverage, many reanalysis and satellite-derived ISR 47 

products have been published, which are often validated with in-situ measurements. However, 48 

existing reanalysis and satellite-derived products are usually limited by accuracy and spatial 49 

resolution for many applications. The World Meteorological Organization Observing System 50 

Capability Analysis and Review Tool proposed requirements for ISR: “Goal,” “Breakthrough,” 51 

and “Threshold” are three levels of requirements, ranging from “ultimate” to “acceptable” 52 

targets. Many researchers have evaluated widely used reanalysis and satellite-derived ISR 53 

products. Zhang et al. (2015; 2016) showed the insufficient spatial resolution and accuracy 54 

among existing products. All the widely used ISR products’ spatial resolutions are coarser than 55 

0.3°, which fails to meet the 20 km basic “threshold” requirement for agricultural meteorology. 56 

Moreover, the best performance in terms of root mean square error (RMSE) among these 57 

products is Clouds and Earth’s Radiant Energy System Energy Balanced and Filled (CERES-58 

EBAF), which has a monthly RMSE of 18.8 W/m2 and still fails to meet the basic “threshold” 59 

requirement for all applications in terms of either temporal resolution (daily) or uncertainty.  60 

The published algorithms for estimating ISR from satellite data can be categorized into 61 

three groups: parameterization, look-up table (LUT), and machine learning methods. Most 62 

parameterization methods use satellite-derived atmospheric products to calculate ISR from 63 

parameterized equations (Bisht and Bras 2010; Forman and Margulis 2009; Qin et al. 2015; Tang 64 

et al. 2016; Van Laake and Sanchez-Azofeifa 2004). Different components of atmospheric effects 65 

(such as aerosol absorption/scattering, cloud reflection, and gas absorption) are usually 66 

parameterized separately according to their physical bases. The general idea of LUT methods is a 67 

simplification of radiative transfer simulation (Huang et al. 2016b; Huang et al. 2011; Liang et 68 

al. 2006; Zhang et al. 2014): ISR can be simulated by radiative transfer models with the input of 69 
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atmospheric and surface parameters (e.g., aerosol, cloud, water vapor, and surface albedo), but 70 

due to the limited efficiency of the radiative transfer calculation, only selected cases of 71 

combinations (“bins”) are calculated and stored in an offline LUT. When the ISR is estimated 72 

online, the simulation results are interpolated according to the value of the parameters. Machine 73 

learning methods link ISR and satellite images with statistical relationships (Aguiar et al. 2015; 74 

Akarslan and Hocaoglu 2016; Akarslan et al. 2014; Janjai et al. 2009; Mefti et al. 2008; Tang et 75 

al. 2016).  76 

However, all three types of algorithms have corresponding limitations. Parameterization,  77 

LUT and some of the machine learning algorithms require atmospheric products as input, but 78 

some atmospheric products, such as aerosol optical depth (AOD), are hard to estimate (Levy et 79 

al. 2010) and bring uncertainties into the estimation of ISR. LUT algorithms usually use linear 80 

interpolation to calculate parameters within the pre-calculated bins, which sometimes brings 81 

uncertainties. LUT methods further have to balance efficiency and accuracy. Thus, the 82 

dimensions and bins of the LUT have to be limited. Machine learning algorithms essentially rely 83 

on a statistical relationship to estimate ISR and lack a physical basis. The performances highly 84 

depend on the quantity and representativeness of the training data.   85 

In this paper, we present an optimization-based method to estimate ISR from Moderate 86 

Resolution Imaging Spectroradiometer (MODIS) TOA spectral reflectance. This algorithm can 87 

estimate ISR using only MODIS TOA reflectance, and multiple products are optional input for 88 

the algorithm as constraints. Our algorithm optimizes both atmospheric and surface parameters 89 

simultaneously with a radiative transfer model and a cost function, from which ISR is estimated 90 

with a pre-calculated LUT. Validation against ground measurements at seven SURFRAD sites 91 

and 8 GC-Net sites in 2013 was conducted to evaluate the algorithm’s performance in different 92 
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climate regions with various land cover types. Section 2 of this paper describes the theoretical 93 

concepts and includes a brief introduction to the retrieval algorithm. Section 3 describes the 94 

datasets used in this study. Validation results are presented and discussed in Section 4, and a 95 

summary is presented in Section 5.  96 

 97 

2. Methodology 98 

2.1 Optimization of surface bidirectional reflectance distribution function parameters and 99 

atmospheric optical depth 100 

The method for the optimization of bidirectional reflectance distribution function (BRDF) 101 

parameters was originally developed for the estimation of surface reflectance, albedo, and AOD 102 

under cloud-free conditions (He et al. 2012). We extended the algorithm for estimating 103 

instantaneous ISR from MODIS data. Figure 1 shows the framework of the ISR estimation 104 

algorithm. 105 
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 106 

Figure 1 Framework of the ISR estimation algorithm 107 

2.1.1 Calculation of TOA reflectance 108 

The spectral TOA reflectance in the first seven spectral bands was calculated via surface 109 

and atmospheric parameters through radiative transfer simulation. The calculated TOA 110 

reflectance was used to build a cost function, which was used to determine the optimums of 111 

surface and atmospheric parameters. 112 

Many simplified forward models, including various two-stream (Meador and Weaver 113 

1980) and four-stream methods (Liang and Strahler 1994, 1995), have been proposed to 114 

approximate radiative parameters. However, these models sacrifice accuracy for higher 115 

efficiency. This study adopted the formulation of radiative transfer incorporating the surface 116 

BRDF model and separating the radiation field into direct and diffuse components in both 117 

upwelling and downward directions. This formulation is accurate although calculating the 118 

reflectance and transmittance terms in the formula requires numerical approximations (Qin et al. 119 
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2001). The TOA reflectance is as follows: 120 

��Ω�, Ω�� = �	�Ω�, Ω�� + �������,���� ���������������|���,��|
������  (1) 121 

��Ω�� = �����Ω��, ����Ω��� (2) 122 

��Ω�� = �����Ω��, ����Ω���� (3) 123 

��Ω�, Ω�� =  !���Ω�, Ω�� !���Ω��
!��� Ω�� !��

" (4) 124 

Where Ω� and Ω� denote the solid angles of the solar and viewing directions, 125 

respectively. �	�Ω�, Ω�� is the reflectance normalized by path radiance and is controlled only by 126 

the atmosphere. 
�������,���� ���������������|���,��|

������  is controlled by the interaction between 127 

the surface and atmosphere. In the second term, T and R denote a transmittance and reflectance 128 

matrix (Equations 3 and 4), respectively, while t and r represent bi-directional transmittance and 129 

reflectance, respectively. � is the atmospheric spherical albedo, and ��Ω�� and ��Ω�� are 130 

combinations of direct and diffuse transmittance, respectively.  131 

Here, d denotes “directional” and h denotes “hemisphere.” Thus, ����Ω�� is direct 132 

transmittance and  ����Ω�� is diffuse transmittance. In practice, it is usually time-consuming to 133 

calculate all the atmospheric parameters in each pixel online. To make computation more time-134 

efficient the atmospheric parameters were pre-calculated offline by simulation using the radiative 135 

transfer software libRadtran (Mayer and Kylling 2005) and stored in the LUT. 136 

In terms of the surface, d denotes “directional” and h denotes “hemisphere.” !�� and 137 

!���Ω�� represent white and black-sky albedo, respectively. All of the parameters can be 138 

calculated with surface BRDF parameters. The surface BRDF model and the atmospheric 139 

radiative transfer simulation are presented in Sections 2.1.2 and 2.1.3, respectively. 140 

2.1.2 Surface BRDF model 141 
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BRDF models quantify angular distribution parameters of surface-reflected radiance. 142 

Various models have been proposed to simulate anisotropic characteristics of the surface. These 143 

BRDF models can be divided into three main groups, namely computer simulation, physical, and 144 

semi-empirical models. Pokrovsky and Roujean (2003a, b) compared different kernel-based 145 

BRDF models and found that the Li–Sparse and Roujean models have the best performance. The 146 

improved Ross–Li kernel model by Maignan (2004) and Breon (2002) is used to calculate the 147 

surface anisotropic reflectance: 148 

��Ω�, Ω�, #� = $%�& + $�&'(�&'�Ω�, Ω�, #� + $)*&()*&�Ω�, Ω�, #� (5) 149 

Where, Ω�, Ω�, and # are the solar zenith, view zenith, and relative azimuth angles, 150 

respectively. (�&' is a kernel based on the approximation of the radiative transfer for canopy, and 151 

()*& is a kernel based on the distribution of the surface canopy size and orientation. $%�&, $�&' , 152 

and $)*& are the coefficients for these kernels.  153 

2.1.3 Atmospheric radiative transfer simulation 154 

Atmospheric optical parameters such as spherical albedo, atmospheric downward/upward 155 

transmittance, and path reflectance are required to implement a forward simulation using 156 

Equation 3. To make the algorithm more efficient, all of the parameters were pre-calculated in 157 

representative geometries and atmospheric conditions (AOD and cloud optical depth [COD]). 158 

Again, libRadtran (Mayer and Kylling 2005) software was used for the generation of the LUT. 159 

The following values were used as entries in the radiative transfer simulations: solar zenith angle 160 

(0°–80°, at 5° intervals), viewing zenith angle (0°–80°, at 5° intervals), relative azimuth angle 161 

(0°–180°, at 10° intervals), COD (1, 2, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100), AOD at 550 162 

nm (0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0), and water vapor (0, 15, 30, 163 

45, 60, 75, 90, 105 mm).  164 
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We used the continental-clean model to estimate ISR at the SURFRAD sites and the 165 

Antarctic model to estimate ISR at the GC-Net sites. For each specific solar/viewing geometry 166 

and atmospheric parameter (AOD at 550 nm for clear-sky conditions or COD for cloudy-sky 167 

conditions), radiative transfer simulations generated path reflectance, upward/downward 168 

transmittances, and spherical albedo for each of the seven MODIS bands. We used actual site 169 

elevation to estimate ISR at the SURFRAD and GC-NET sites. With the atmospheric LUT, we 170 

calculated the surface broadband albedo and atmospheric index (AOD and COD) from the 171 

optimization process. ISR could then be calculated under certain geometries using the surface 172 

radiation LUT. In this paper, we calculated the ISR for the spectral range of 280–2800 nm to 173 

match the field measurements. 174 

2.1.4 Cost function and optimization 175 

The TOA spectral reflectance calculated from the steps described Sections 2.1.1–2.1.3 176 

was used to build up the following cost function:  177 

+�,� = ��*���,� − �&.��,��/����*���,� − �&.��,��++0 + ��1�,� − 10'2�3���1�,� −178 

10'2� + �4�,� − 4*���5���4�,� − 4*��� + �6�,� − 6*���5���6�,� − 6*����  (6) 179 

,0'� = �3�67�, 3�678, … , 3�67:; , 1/6�, 1/68, … , 1/6:<  ��  (7) 180 

,0'� = � 4/6�, 4/68, … , 4/6:< ��  (8) 181 

Where NB is the number of spectral bands, and NO is the number of clear-sky 182 

observations. BRDFi is a set of BRDF kernel parameters. AODj and CODj are the AOD and COD 183 

values of corresponding observations, respectively. �&.� and �*�� are satellite-observed TOA 184 

reflectance and simulated TOA reflectance from the radiative transfer model for one band and 185 

one geometry (solar zenith, viewing zenith, and relative azimuth angles), respectively.  186 

The terms in the square brackets are optional constraints in Equation 6. 1�,� is the 187 
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calculated surface shortwave broadband albedo from the retrieved BRDF parameters, and 10'2 is 188 

the broadband albedo climatology. The albedo climatology is used to constrain the retrieving 189 

procedure. It characterizes the major seasonal and annual changes in surface albedo. Multiyear 190 

MODIS albedo products were collected to generate the spatially and temporally continuous 191 

albedo climatology. 4�,�  is the calculated AOD at 550 nm, and 4*��  is the MODIS 192 

MOD/MYD04 AOD data. 6�,� is the calculated COD, and 6*�� is the MODIS MOD/MYD06 193 

COD data. The AOD and COD products were used to constrain the retrieving procedure of 194 

atmospheric parameters. Jc denotes the penalty part of the cost function. In any particular 195 

geometry, if the reflectance or albedo calculated from the BRDF model is negative or greater 196 

than one, Jc is set to a large punitive value. In this framework, the AOD and COD can be the by-197 

product of ISR when they are not available as input. However, if AOD and COD were provided 198 

as input, they could serve as constraints in the cost function to improve the accuracy.  199 

Here, X denotes unknown parameters within the time window (8 days). In the clear-sky 200 

case, ,0'� included surface BRDF parameters and AOD. An assumption was made that the 201 

surface BRDF parameters and aerosol types were stable within the time window. In the cloudy-202 

sky case, surface parameters were usually unavailable, and the BRDF parameters optimized from 203 

clear-sky cases were used as input; ,0'� only included the COD. 204 

In one single time step, the unknown parameters included three BRDF parameters for 205 

each spectral band and the atmospheric parameters (AOD/COD), while the information number 206 

was equal to the number of bands (NB). An assumption was needed to make the optimization 207 

solvable. Usually, the change of surface is much slower than that of the atmosphere, and we 208 

therefore assumed that the surface BRDF parameters remained constant within a time window. In 209 

this paper, the time window was eight days to obtain enough clear observations. The Shuffled 210 
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Complex Evolution algorithm (Duan et al. 1994) was used to search for the optimum. 211 

2.2 Calculation of instantaneous ISR 212 

The ISR was estimated with Equations 9 and 10 (Liang et al. 2006):  213 

7�=	� = 7	�=	� + ���>
�����> =	?	@�=	� (9) 214 

7	�=	� =  7�%��=	� +  7�%A�=	� (10) 215 

Where, 7	�=	� is the radiation without any contribution from the surface, and 7�%��=	� 216 

and 7�%A�=	� denote the direct and diffuse parts, respectively. !� is the surface reflectance, �̅ is 217 

the spherical albedo, =	 is the cosine of the solar zenith angle, ?	 is the extraterrestrial solar 218 

irradiance, and @�=	� is the total trnasmittance. For each combination of geometry and optical 219 

depth, 7	�=	�, �̅, and =	?	@�=	� were pre-calculated by radiative transfer simulation and stored 220 

in the LUT. The ISR was the integration of the flux from 280 to 2800 nm. The optimized BRDF 221 

parameters and AOD/COD were used to estimate instantaneous ISR according to the LUT.  222 

2.3 Cloud screening 223 

In the validation procedure, we introduced a cloud-screening process. The 3-D structure 224 

of clouds may cause different views from the sensor and the site tower. Sometimes the sensor 225 

view is cloudy but the tower view is clear, vice versa. The cloud-screening procedure was 226 

designed to lower this effect. As shown in Figure 2, the ratio between direct ISR and total ISR 227 

was mainly determined by the optical depth. We calculated the “cloud mask” for each 228 

SURFRAD observation based on site-observed direct/total ISR ratio and radiative simulation. If 229 

the direct ISR ratio from the site observation was less than the simulated ratio at an optical depth 230 

of 1, the site observed cloud mask was defined as cloudy, otherwise it was deemed clear. In the 231 
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cloud-screening process, if the MODIS cloud mask data product differed from the cloud mask of 232 

the corresponding SURFRAD observation, the observation was included in the validation. A total 233 

of 5.75% of observations was removed in this process. The GC-Net observations provided only 234 

total ISR, and therefore the cloud-screening process was only used at the SURFRAD sites. 235 

 236 
Figure 2 Impact of optical depth and surface albedo on the direct ISR ratio from radiative 237 

simulation 238 

3. Data 239 

3.1 MODIS data 240 

MODIS provided seven spectral bands in the shortwave range (bands 1–7) that can be 241 

used in this application. We transformed the MODIS Level 1B C6 calibrated radiance data into 242 

TOA bidirectional reflectance. In the clear-sky model, for a given observation number N, the 243 

input data were the TOA reflectance observations from the seven spectral bands, and the 244 

unknown variables were the three BRDF kernel parameters for each band and the N AOD values. 245 
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The BRDF parameters were wavelength-dependent and were unknown for the seven bands of 246 

each observation. Because there were fewer observations than unknown variables, an assumption 247 

needed to be made to solve the underdetermined problem. We assumed that the surface BRDF 248 

kernel parameters were stable and invariant within a sliding time window. To guarantee an 249 

invertible process, the number of input parameters had to be no less than the number of unknown 250 

variables. Therefore, N had to be at least four.  251 

MODIS level 2 cloud mask products (MOD/MYD35_L2) were used to distinguish clear 252 

and cloudy condition observations. MODIS level 2 water vapor products (MOD/MYD05) were 253 

used for water vapor correction. In addition, several MODIS products were used as optional 254 

constraints in the optimization procedure. The MODIS level 2 aerosol product (MOD/MYD04) 255 

provided AOD data, and the cloud product (MOD/MYD06) provided COD data. The AOD and 256 

COD data were used as constraints for the atmospheric conditions in the optimization process in 257 

the clear-sky and cloudy-sky models, respectively. MODIS surface reflectance data 258 

(MOD/MYD09) were used as optional input in the cloudy-sky model. Ten years (2000–2009) of 259 

MODIS broadband albedo products and quality control data were collected, and albedo data 260 

marked as “good quality” were used to calculate the climatology. 261 

3.2 Ground measurements 262 

Ground measurements from seven SURFRAD (Augustine et al. 2000) sites and 8 GC-Net 263 

(Steffen et al. 1996) sites in 2013 were used in this study to validate ISR. All the GC-Net sites 264 

with available field measurements were included. The GC-Net sites collected shortwave 265 

radiation observations every hour, and these data facilitated validation of the algorithm accuracy 266 

over the snow-covered surface. We matched the estimation results with the closest ground 267 

measurement in the temporal domain within 30 min (Huang et al. 2016a) at the SURFRAD sites. 268 
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Table 1 shows the site information of the sites used in this study. 269 

Table 1 SURFRAD and GC-Net sites for validation 270 

Site Name Latitude Longitude Elevation(m) 

Fort Peck 48.31 -105.10 634 

Sioux Falls 43.73 -96.62 473 

Penn State 40.72 -77.93 376 

Bondville 40.05 -88.37 230 

Boulder 40.13 -105.24 1689 

Desert Rock 36.62 -116.02 1007 

NASA-U 73.84 -49.51 2334 

Humboldt 78.53 -56.83 1995 

Summit 72.58 -38.51 3199 

Tunu-N 78.02 -33.98 2052 

DYE-2 66.48 -46.28 2099 

Saddle 66.00 -44.50 2467 

NASA-SE 66.48 -42.50 2373 

NEEM 77.50 -50.87 2454 

 271 

We used the quality assurance flag to eliminate uncertainties from the MODIS cloud 272 

mask product. The MOD/MYD35 data provided a “confidence level” quality flag. We eliminated 273 

data marked as “no confidence” and only used the data with a quality assurance of “intermediate 274 

confidence,” “high confidence,” or “very high confidence.”  275 

4. Results and discussion 276 

4.1 Validation with SURFRAD site measurements 277 

Comparisons between retrieved surface ISR and ground measurements for the 278 

SURFRAD sites are shown in Figures 3, 4, and 5. The validation results show an R2 of 0.96, a 279 

bias of 7.07 W/m2, and an RMSE of 62.19 W/m2 (12.12%) for instantaneous ISR. The RMSEs 280 

for clear and cloudy condition validation were 41.85 and 71.75 W/m2, respectively.  281 
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 285 

Figure 3 Scatterplot of instantaneous ISR in 2013 at SURFRAD sites. Result calculated with 286 

AOD and COD product as constraints. (Blue: clear-sky results, Red: cloudy-sky results, Points: 287 

snow-free results, Squares: Snow covered results) 288 

Figure 4 shows a time series of the validation results for each site. The retrieved ISR 289 

could sufficiently characterize seasonal change. The Desert Rock site had a higher clear-sky 290 

observation ratio than other sites did and thus had the lowest RMSE and bias error.  291 

292 

293 
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295 

296 

297 

 298 
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 299 

Figure 4 Validation of time series for instantaneous ISR in 2013 at SURFRAD sites. Result 300 

calculated with AOD and COD product as constraints. (Blue: estimated results, Red: SURFRAD 301 

site observation data, the gray area denotes observation over snow) 302 

 303 

Figure 5 Validation RMSE for clear/cloudy/all sky and over snow at SURFRAD sites 304 

The clear-sky results show similar RMSEs among all sites. The cloudy-sky results show 305 

the largest RMSE in the Boulder site. The Boulder site is located in Table Mountain, which is 306 

more easily affected by sparse cloud cover. Furthermore, the Boulder site had the largest 307 

difference between clear-sky and cloudy-sky results. For clear-sky results, all seven sites had an 308 

RMSE of less than 60 W/m2. The all-sky results for all seven sites had a bias error of less than 15 309 

W/m2 and an RMSE of less than 75 W/m2.  310 

4.2 Validation with GC-Net site measurements 311 

Comparisons between retrieved surface ISR and ground measurements for the GC-Net 312 

sites are shown in Figures 6, 7, and 8. The validation results show an R2 of 0.89, a bias of -15.77 313 
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W/m2, and an RMSE of 71.70 W/m2 (17.74%) for instantaneous ISR. The RMSEs for clear-sky 314 

and cloudy-sky validations were 56.14 and 86.69 W/m2, respectively. The clear- and cloudy-sky 315 

observations were masked by the MODIS cloud mask product, which may have more 316 

uncertainties over Arctic areas due to snow.  317 

318 

319 

 320 
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Figure 6 Scatterplot of instantaneous ISR in 2013 at GC-Net sites. (Blue: clear-sky results Red: 321 

cloudy-sky results) 322 

323 

324 

325 

326 

327 
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328 

329 

 330 

Figure 7 Validation of time series for instantaneous ISR in 2013 at GC-Net sites. (Blue: 331 

estimated results, Red: GC-Net site observation data, the gray area denotes observation over 332 

snow, missing data are due to data gap from field observations) 333 

 334 

Figure 8 Validation RMSE for clear/cloudy/all sky and over snow cases at GC-Net sites 335 

The results from the GC-Net sites had larger bias errors and RMSEs compared with those 336 
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of the SURFRAD sites; this is clearer in the relative RMSE than in the absolute value. Snow-337 

covered surfaces bring uncertainties to the estimation, especially in cloudy-sky cases. On the 338 

other hand, we obtained more satellite observations in the Arctic region, which provided enough 339 

information for the optimization. The GC-Net validation results show that the proposed 340 

algorithm was capable of estimating ISR for permanent-snow cases. 341 

4.3 Analysis of impacts from constraints and cloud-screening analysis of impacts 342 

In the estimation algorithm, we used several optional products as optional constraints; 343 

these include MODIS surface albedo (MCD43), MODIS AOD (MOD/MYD04), and MODIS 344 

COD (MOD/MYD06). In the validation procedure, we introduced a cloud-screening process (the 345 

cloud screening process was discussed in Section 2.3). The validation results for different 346 

estimation and validation strategies are shown in Figures 9 and 10 and Tables 2–7. The inclusive 347 

of constraints led to a decrease of approximately 5 and 13 W/m2 in RMSEs at the SURFRAD 348 

and GC-Net sites, respectively; the cloud-screening process lowered the RMSE by about 17 349 

W/m2 at the SURFRAD sites. The reduced RMSE at each site from the constraints and the cloud 350 

screening are shown in Figures 11 and 12. At the SURFRAD sites, the largest RMSE decrease 351 

from constraints was found at the Penn State site. At the Fort Peck site, the inclusive of 352 

constraints increased the RMSE, which meant that the uncertainties from the optional constraints 353 

sometimes lowered the accuracy. The largest difference after the cloud-screening process was 354 

found at the Boulder site, as this site is located in the Table Mountain and is more often affected 355 

by sparse cloud cover. At the GC-Net sites, decreases in RMSEs were generally less than those at 356 

the SURFRAD sites. This is because more observations were acquired in the Arctic region and 357 

used in the optimization; therefore the TOA reflectance contributed relatively more information 358 

compared with that in lower latitudes.  359 
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360 

 361 
Figure 9 Impact of constraints and cloud-screening on the estimated and site observed ISR at 362 

SURFRAD sites 363 
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  364 
Figure 10 Impact of constraints and cloud-screening on the estimated and site observed ISR at 365 

GC-Net sites 366 

 367 

Table 2 Validation results at SURFRAD site without constraints and cloud-screening 368 

Sites R2 Bias, W/ m2 RMSE, W/ m2 RMSE, % Clear RMSE Cloudy RMSE Snow RMSE 

Fort Peck 0.92 -2.23 73.27 14.26 49.62 84.69 73.46 

Sioux Falls 0.91 -7.39 80.73 15.92 48.05 95.37 89.41 

Penn State 0.92 6.05 83.51 17.59 63.99 89.33 76.30 

Bondville 0.91 -7.96 84.95 16.58 59.92 96.08 90.71 

Boulder 0.85 -25.94 109.12 18.17 67.13 134.39 120.23 

Desert Rock 0.92 -14.86 68.51 9.32 52.17 100.04 NAN 

Goodwin Creek 0.92 8.22 83.13 14.79 70.41 91.46 NAN 

All 0.91 -6.47 84.17 15.12 58.50 98.96 86.58 

 369 

Table 3 Validation results at SURFRAD site with constraints 370 

Sites R2 Bias, W/ m2 RMSE, W/ m2 RMSE, % Clear RMSE Cloudy RMSE Snow RMSE 

Fort Peck 0.93 -4.14 71.94 13.97 47.57 83.51 75.76 

Sioux Falls 0.91 -9.32 82.08 16.15 49.87 96.45 89.66 

Penn State 0.93 6.35 76.30 16.11 62.70 80.50 71.59 

Bondville 0.92 -8.74 77.18 15.01 56.46 86.70 82.31 

Boulder 0.87 -23.35 99.10 16.57 63.10 121.25 120.45 

Desert Rock 0.93 -15.87 67.33 9.16 51.48 97.74 NAN 

Goodwin Creek 0.93 5.90 75.47 13.59 66.85 81.24 NAN 

All 0.92 -7.16 79.08 14.23 56.51 92.26 86.23 

 371 

Table 4 Validation results at SURFRAD site with cloud-screening 372 

Sites R2 Bias, W/ m2 RMSE, W/ m2 RMSE, % Clear RMSE Cloudy RMSE Snow RMSE 
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Fort Peck 0.96 15.44 57.08 12.18 37.23 69.79 55.95 

Sioux Falls 0.94 10.38 67.25 14.39 43.07 81.50 75.65 

Penn State 0.95 24.00 69.86 18.01 45.04 77.46 54.37 

Bondville 0.94 6.55 68.87 15.36 39.68 83.58 94.13 

Boulder 0.92 -2.39 80.66 14.05 46.16 111.21 103.56 

Desert Rock 0.94 0.38 56.90 7.58 43.97 109.61 NAN 

Goodwin Creek 0.94 8.85 73.54 14.90 46.99 92.50 NAN 

All 0.95 9.13 67.85 13.22 43.31 86.01 71.03 

 373 

Table 5 Validation results at SURFRAD site with constraints and cloud-screening 374 

Sites R2 Bias, W/ m2 RMSE, W/ m2 RMSE, % Clear RMSE Cloudy RMSE Snow RMSE 

Fort Peck 0.96 13.18 56.71 12.01 38.26 68.80 60.64 

Sioux Falls 0.94 8.94 67.65 14.43 41.94 82.46 80.11 

Penn State 0.96 20.11 59.48 15.37 42.41 64.97 50.56 

Bondville 0.95 3.48 63.08 14.06 35.85 76.79 83.80 

Boulder 0.94 -2.34 73.58 12.85 43.74 100.48 95.46 

Desert Rock 0.95 -1.78 51.75 6.89 43.32 89.86 NAN 

Goodwin Creek 0.96 7.44 61.37 12.54 45.07 73.69 NAN 

All 0.96 7.07 62.19 12.12 41.85 77.65 71.75 

 375 

Table 6 Validation results at GC-Net site without constraints 376 

Sites R2 Bias, W/ m2 RMSE, W/ m2 RMSE, % Clear RMSE Cloudy RMSE 

NASA-U 0.86 -46.48 88.62 21.85 65.44 113.48 

Humboldt 0.81 -12.64 69.22 20.55 56.62 84.52 

Summit 0.84 -39.39 96.48 24.29 76.88 108.89 

Tunu-N 0.81 -21.56 73.59 20.53 46.17 111.80 

DYE-2 0.88 6.72 88.26 18.05 58.20 108.23 

Saddle 0.88 3.85 88.41 17.59 68.39 101.73 

NASA-SE 0.88 -22.68 93.82 18.43 56.17 119.23 

NEEM 0.80 -8.26 77.42 22.92 64.43 91.75 

All 0.86 -21.40 84.77 20.96 61.65 105.77 

 377 

 378 

Table 7 Validation results at GC-Net site with constraints 379 

Sites R2 Bias, W/m2 RMSE, W/ m2 RMSE, % Clear RMSE Cloudy RMSE 

NASA-U 0.90 -39.21 75.00 18.52 60.28 92.12 

Humboldt 0.86 -9.97 59.06 17.52 49.01 71.14 

Summit 0.86 -31.80 87.42 22.02 69.47 98.89 

Tunu-N 0.88 -14.32 55.62 15.53 39.90 79.69 

DYE-2 0.93 9.31 66.30 13.61 57.90 73.51 

Saddle 0.90 4.04 83.24 16.59 66.95 94.60 
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NASA-SE 0.91 -14.23 78.19 15.33 54.73 95.30 

NEEM 0.87 -2.51 62.02 18.36 55.41 69.75 

All 0.89 -15.77 71.70 17.74 56.14 86.69 

 380 

 381 

 382 
Figure 11 Impact of constraints and cloud-screening on the validation RMSE at SURFRAD sites 383 

 384 

 385 

Figure 12 Impact of constraints and on the validation RMSE at GC-Net sites 386 

5. Conclusions 387 

The goal of this study was to estimate high-resolution surface ISR from MODIS TOA 388 

observations. We assumed that the surface BRDF parameters remained stable within a short time 389 

window. Subsequently, we simulated atmospheric transmittance in each atmospheric condition 390 

(AOD/COD). With the modeled BRDF parameters and simulated atmospheric transmittance, we 391 
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calculated TOA reflectance and then optimized the BRDF parameters and atmospheric 392 

conditions (AOD/COD). Finally, we estimated ISR based on the surface BRDF parameters and 393 

atmospheric conditions. We validated the estimated ISR using ground data measured in 2013 at 394 

seven SURFRAD and 8 GC-Net sites. The validation results showed sufficient accuracy at both 395 

snow-free and snow-covered sites. The SURFRAD site validation showed an R2 of 0.91, a bias 396 

of -6.47 W/m2, and an RMSE of 84.17 W/m2 (15.12%); the GC-Net validation showed an R2 of 397 

0.86, a bias of -21.40 W/m2, and an RMSE of 84.77 W/m2 (20.96%) for instantaneous ISR.  398 

The algorithm has several advantages: First, most of other methods rely on input data. 399 

However, many input data, especially the atmospheric data (e.g. AOD, COD) have large 400 

uncertainties. The uncertainties from input data accumulated in the estimation algorithms and 401 

cause larger influence on the results. The proposed method relies on multispectral satellite 402 

observations and can distinguish the information from the atmosphere and the surface directly 403 

from the TOA information. High-level products (surface and atmospheric) are not required input 404 

but serve as optional constraints. This helps improve the estimates of surface incident radiation.  405 

Secondly, this algorithm could estimate ISR with a higher accuracy than existing 406 

products and algorithms could at the SURFRAD and GC-NET sites. The validation at the 407 

SURFRAD and GC-Net sites showed a bias of 7.07 and -15.77 W/m2, and an RMSE of 62.19 408 

W/m2 (12.12%) and 71.70 W/m2 (17.74%), respectively. Many previous studies assessed the 409 

widely used satellite-based products and revealed larger uncertainties. (Gui et al. 2010; Jia et al. 410 

2013; Zhang et al. 2013; Zhang et al. 2014), showing an RMSE of 80~150 W/m2 for hourly/3-411 

hourly ISR at the same SURFRAD sites. Most existing methods calculate ISR based on surface 412 

and atmospheric products. The uncertainties from each of the products may be accumulated to 413 

produce a much larger error in the estimated ISR. In the proposed method, however, the products 414 
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could be used as constraints in the cost function to aid the optimization, but they were optional 415 

inputs. The proposed algorithm mainly relied on multiple TOA observations from sensors and is 416 

a direct retrieval method. Second, this algorithm could estimate other surface parameters, 417 

including surface band reflectance and surface broadband albedo. Third, this algorithm could 418 

estimate ISR under different atmospheric and surface conditions, including clear-sky and cloudy-419 

sky conditions as well as snow-free and snow-covered surfaces. 420 

Furthermore, we analyzed the improvement of accuracy using MODIS AOD, COD, and 421 

surface albedo data as cost function constraints. When the AOD and COD estimates were 422 

constrained, validation results indicated RMSE reductions of 21.98 W/m2 and 13.07 W/m2 at the 423 

SURFRAD and GC-Net sites, respectively. Additional products may help the optimization but 424 

may also bring uncertainties. In the snow-free cases, the improvement was significant at most 425 

sites. However, in the snow-covered cases, the RMSE decrease was smaller. The combination of 426 

greater information and uncertainty resulted in a smaller improvement in the Arctic region than 427 

in lower latitude. This was due to more observations from TOA at high latitudes and more 428 

uncertainties in the MODIS atmospheric products in these regions. 429 

However, the proposed algorithm had some limitations. The algorithm relied on cloud 430 

mask data to distinguish clear-sky and cloudy-sky conditions, but the cloud mask data may be 431 

unreliable in snow-covered areas, which may limit the accuracy of ISR estimation. Furthermore, 432 

the optimization process was relatively time-consuming. Further efforts will be made to improve 433 

the efficiency in mainly two ways: 1) improving the efficiency of the optimization method by 434 

using more a rapid convergence approach, and 2) replacing the LUT with parameterization.  435 
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